

1000V, 20A, 0.44 Ω Max, $t_{rr} \le$ 290ns

N-Channel FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of $C_{\text{rss}}/C_{\text{iss}}$ result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- ZVS phase shifted and other full bridge
- · Half bridge
- PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
I _D	Continuous Drain Current @ T _C = 25°C	20	
	Continuous Drain Current @ T _C = 100°C	13	Α
I _{DM}	Pulsed Drain Current ^①	120	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy®	1875	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	16	Α

Thermal and Mechanical Characteristics

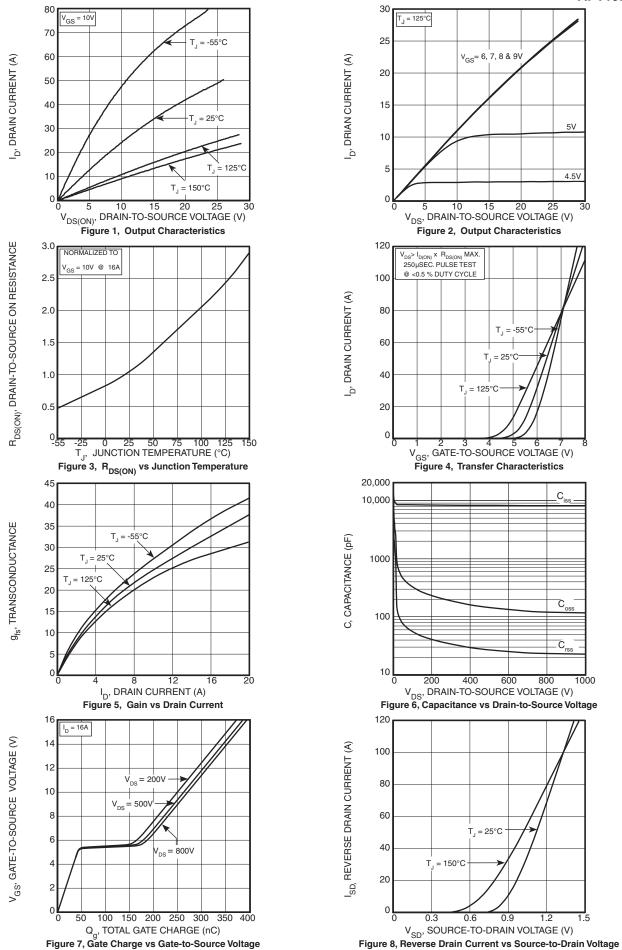
Symbol	Characteristic		Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			460	W	
$R_{\theta JC}$	Junction to Case Thermal Resistance			0.27	0.27 °C/W	
$R_{\theta CS}$	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15			
T _J ,T _{STG}	Operating and Storage Junction Temperature Range	-55		150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)				V	
W _T	Package Weight		1.03		OZ	
			29.2		g	
Torque	Terminals and Mounting Screws.			10	in∙lbf	
				1.1	N⋅m	

-10 =0					711 1 101 1000	
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$	1000			V
$\Delta V_{BR(DSS)}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250µ	A	1.15		V/°C
R _{DS(on)}	Drain-Source On Resistance®	$V_{GS} = 10V, I_{D} = 16A$		0.39	0.44	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	V V I 0.5mA	2.5	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient	$V_{GS} = V_{DS}, I_D = 2.5 \text{mA}$		-10		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 1000V$ $T_{J} = 25^{\circ}C$			250	μΑ
		$V_{GS} = 0V$ $T_J = 125^{\circ}C$			1000	μΛ
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 30V$			±100	nA

Dynamic Characteristics

T₁ = 25°C unless otherwise specified

APT19F100J


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
9 _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 16A$		34		S
C _{iss}	Input Capacitance	V 0V V 05V		8500		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		115		
C _{oss}	Output Capacitance			715		
$C_{o(cr)} \textcircled{4}$	Effective Output Capacitance, Charge Related	V 0V V 0V to 007V		290		pF
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 667V$		150		
Q _g	Total Gate Charge	V 01 10V 1 10A		260		
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 16A,$ $V_{DS} = 500V$		46		nC
Q _{gd}	Gate-Drain Charge	v _{DS} = 500V		125		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		36		
t _r	Current Rise Time	V _{DD} = 667V, I _D = 16A		37		ns
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\textcircled{6}}, V_{GG} = 15V$		140		115
t _f	Current Fall Time]		35		1

Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Is	Continuous Source Current (Body Diode)	MOSFET symbol showing the	\$		20	Α
I _{SM}	Pulsed Source Current (Body Diode) ^①	integral reverse p-n junction diode (body diode)	os		120	$] \cap $
V _{SD}	Diode Forward Voltage	$I_{SD} = 16A, T_{J} = 25^{\circ}C, V_{GS} = 0V$			1.1	V
t _{rr}	Reverse Recovery Time	T _J = 25°C			290	ne
rr		T _J = 125°C			600	ns
Q _{rr}	Reverse Recovery Charge	$I_{SD} = 16A^{\textcircled{3}}$ $T_{J} = 25^{\circ}C$		1.3		
rr		$V_{DD} = 100V$ $T_{J} = 125^{\circ}C$		3.5		μC
ı	Reverse Recovery Current	$di_{SD}/dt = 100A/\mu s$ $T_J = 25^{\circ}C$		10.6		_
'rrm		T _J = 125°C		14.2		A
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 16A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 667V$ $T_J = 125^{\circ}C$,		25	V/ns

- 1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_J = 25$ °C, L = 14.65mH, $R_G = 2.2\Omega$, $I_{AS} = 16$ A.
- \bigcirc Pulse test: Pulse Width < 380 μ s, duty cycle < 2%.

- 6 R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

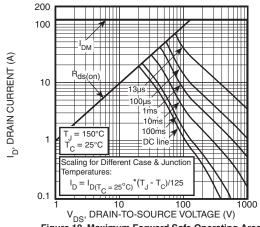
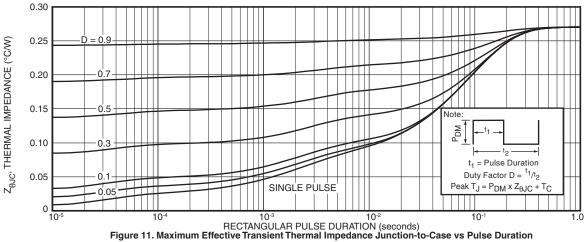



Figure 10, Maximum Forward Safe Operating Area

SOT-227 (ISOTOP®) Package Outline

Dimensions in Millimeters and (Inches)